Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Annals of Laboratory Medicine ; : 195-203, 2017.
Article in English | WPRIM | ID: wpr-183527

ABSTRACT

BACKGROUND: Telomere shortening is thought to be involved in the pathophysiology of myeloid malignancies, but telomere lengths (TL) during interphase and metaphase in hematopoietic malignancies have not been analyzed. We aimed to assess the TLs of interphase and metaphase cells of MDS and telomerase activity (TA) and to find out prognostic significances of TL and TA. METHODS: The prognostic significance of TA by quantitative PCR and TL by quantitative fluorescence in situ hybridization (QFISH) of interphase nuclei and metaphase chromosome arms of bone marrow cells from patients with MDS were evaluated. RESULTS: MDS patients had shorter interphase TL than normal healthy donors (P<0.001). Average interphase and metaphase TL were inversely correlated (P=0.013, p arm; P=0.029, q arm), but there was no statistically significant correlation between TA and TL (P=0.258). The progression free survival was significantly shorter in patients with high TA, but the overall survival was not different according to average TA or interphase TL groups. Multivariable Cox analysis showed that old age, higher International Prognostic Scoring System (IPSS) subtypes, transformation to AML, no history of hematopoietic stem cell transplantation and short average interphase TL (<433 TL) as independent prognostic factors for poorer survival (P=0.003, 0.001, 0.005, 0.005, and 0.013, respectively). CONCLUSIONS: The lack of correlation between age and TL, TA, and TL, and the inverse relationship between TL and TA in MDS patients reflect the dysregulation of telomere status and proliferation. As a prognostic marker for leukemia progression, TA may be considered, and since interphase TL has the advantage of automated measurement by QFISH, it may be used as a prognostic marker for survival in MDS.


Subject(s)
Humans , Arm , Bone Marrow Cells , Disease-Free Survival , Fluorescence , Hematologic Neoplasms , Hematopoietic Stem Cell Transplantation , In Situ Hybridization , Interphase , Leukemia , Metaphase , Myelodysplastic Syndromes , Polymerase Chain Reaction , Prognosis , Telomerase , Telomere Shortening , Telomere , Tissue Donors
2.
Experimental & Molecular Medicine ; : e68-2013.
Article in English | WPRIM | ID: wpr-83999

ABSTRACT

The cytogenetic analysis of mesenchymal stromal cells (MSCs) is essential for verifying the safety and stability of MSCs. An in situ technique, which uses cells grown on coverslips for karyotyping and minimizes cell manipulation, is the standard protocol for the chromosome analysis of amniotic fluids. Therefore, we applied the in situ karyotyping technique in MSCs and compared the quality of metaphases and karyotyping results with classical G-banding and chromosomal abnormalities with fluorescence in situ hybridization (FISH). Human adipose- and umbilical cord-derived MSC cell lines (American Type Culture Collection PCS-500-011, PCS-500-010) were used for evaluation. The quality of metaphases was assessed by analyzing the chromosome numbers in each metaphase, the overlaps of chromosomes and the mean length of chromosome 1. FISH was performed in the interphase nuclei of MSCs for 6q, 7q and 17q abnormalities and for the enumeration of chromosomes via oligo-FISH in adipose-derived MSCs. The number of chromosomes in each metaphase was more variable in classical G-banding. The overlap of chromosomes and the mean length of chromosome 1 as observed via in situ karyotyping were comparable to those of classical G-banding (P=0.218 and 0.674, respectively). Classical G-banding and in situ karyotyping by two personnel showed normal karyotypes for both cell lines in five passages. No numerical or structural chromosomal abnormalities were found by the interphase-FISH. In situ karyotyping showed equivalent karyotype results, and the quality of the metaphases was not inferior to classical G-banding. Thus, in situ karyotyping with minimized cell manipulation and the use of less cells would be useful for karyotyping MSCs.


Subject(s)
Humans , Azure Stains , Chromosome Banding/methods , In Situ Hybridization, Fluorescence/methods , Karyotyping/methods , Mesenchymal Stem Cells/cytology
SELECTION OF CITATIONS
SEARCH DETAIL